

Micro Scale Dynamic Modeling of LSM/YSZ Composite Cathodes

S. Raju Pakalapati^{1,2}, Kirk Gerdes¹, Harry Finklea^{1,2}, Mingyang Gong^{1,2}, Xingbo Liu^{1,2}, Ismail Celik^{1,2} ¹National Energy Technology Laboratory, Morgantown, WV ²National Institute for Fuel Cell Technology, West Virginia University, Morgantown, WV

Introduction

- Activation of Oxygen Reduction Reaction (ORR) in cathode is a major source of loss for low temperature SOFCs.
- Knowledge of the kinetics of oxygen reduction and their dependence on the microstructure will lead to better cathode designs
- Two possible parallel pathways could contribute to ORR on LSM-YSZ cathodes.
 - 2PB pathway and 3PB pathway.
- A micro-scale computational model is developed for composite LSM/YSZ cathodes which takes into account the effect of microstructure.

Model Description

• LSM, YSZ and pore phases are assumed to be completely percolated and treated

Results

- as superimposed continua
- Governing equations for charge and mass transfer are solved in each phase.
- Effective transport coefficients are used and the effect of micro-structure is taken into account through averaged parameters.
- A multi-step charge transfer reaction mechanism with parallel 2PB and 3PB pathways.

Reaction Mechanism:

- $O_{ad} + e^- \leftrightarrow O_{ad}^-$ (S2)
- (S3) $O_{ad}^{-} \leftrightarrow O_{TPB}^{-}$
- $O_{TPB}^{-} + e^{-} + V_{O,YSZ}^{**} \leftrightarrow O_{O,YSZ}^{x} + S$ (S4)
- $(B3) \qquad O_{ad}^- + V_{O,MIEC}^{**} + e^- \leftrightarrow O_{O,MIEC}^x$
- $(B4) \quad O_{O,MIEC}^{x} + e^{-} + V_{O,YSZ}^{**} \leftrightarrow O_{O,YSZ}^{x} + V_{O,MIEC}^{**}$

Predicted polarization curves for different values of r_{b40}

Profiles along the cathode thickness of coverage of O⁻ surface species for different values of r_{b40}

Model Equations

Effect of cathode thickness on polarization curve

Effect of cathode thickness when porosity is increased linearly from the cathode surface to the active interface: (a) polarization curves (b) profiles of faradaic current.

125 Hz Base Case, $\eta = -0.5$ V ¹ 0.6 ¹ ື = 1.0 x 10⁻⁶ m oles/m ~**~**^{0.6⊥} ----- Base Case, n = 0.3 V ' = 1.0 x 10⁻⁷ m oles/m

Gas species transport (O_2)

Coverages Transport (O, O⁻, O⁻_{TPB})

C/Air interface

Ionic current = 0, Electronic potential prescribed, Oxygen concentration prescribed, and flux of all Other species (coverages and vacancies) is zero

$$\frac{\partial \theta_i}{\partial t} = \nabla \left(D_{\theta_i}^{eff} \nabla \theta_i \right) + r_i$$

Vacancies Transport (C_{V.MIEC}, C_{V,YSZ})

$$\frac{\partial C_V}{\partial t} = \nabla \left(D_{C_V}^{eff} \nabla C_V \right) + r_{C_V}$$

Charge Transport

$$C_{DL} \frac{\partial (\Delta \varphi)}{\partial t} = \nabla \cdot (\sigma_i \nabla (\Delta \varphi)) - i_F$$

C/E Interface Electronic current = 0, Ionic potential prescribed, YSZ oxygen vacancy is prescribed, All other fluxes are zero

Model Parameters

rameter	Value	Units	Description
a_{LY}	1×10^{6}	m ⁻¹	Specific LSM/YSZ interface area
a_{LP}	1×10^{6}	m^{-1}	Specific LSM/Pore interface area
Г	1×10 ⁻⁵	$mol m^{-2}$	Active site density on LSM
$\sigma_{_i}$	2.6	$\Omega^{-1} \mathrm{m}^{-1}$	Conductivity of YSZ
$C_{_{DL}}$	0.1	$F m^{-2}$	Double layer capacitance of LSM/YSZ interface
$D_s^{e\!f\!f}$	1×10^{-10}	$m^2 s^{-1}$	surface diffusion coefficient
$D_b^{e\!f\!f}$	1×10^{-10}	$m^2 s^{-1}$	bulk diffusion coefficient
$C_{O_{Eq}}$	1×10^{-6}	$mol m^{-2}$	Equilibrium concentration of surface O ⁻ ions
$\theta_{O,Eq}$	0.01	no units	Equilibrium concentration of surface O ions
V,LSM,Eq	1×10^{-1}	$mol m^{-3}$	Equilibrium concentration of vacancies in LSM
v,YSZ,Eq	5×10^{3}	$mol m^{-3}$	Equilibrium concentration of vacancies in YSZ
k_{S1}^-	1×10^{4}	s^{-1}	Backward reaction rate constant for reaction S1
$r_{S2,0}$	5.0×10^{-4}	$mol m^{-2} s^{-1}$	Equilibrium exchange rate for reaction S2
k _{S3}	1×10^{1}	s^{-1}	Forward reaction rate constant for reaction S3
$r_{S4,0}$	1.0×10^{-3}	$mol m^{-2} s^{-1}$	Equilibrium exchange rate for reaction S4
$r_{B3,0}$	5.0×10^{-4}	mol $m^{-2} s^{-1}$	Equilibrium exchange rate for reaction B3
r _{B4,0}	1.0×10^{-4}	$mol m^{-2} s^{-1}$	Equilibrium exchange rate for reaction B4

PENNSTATE

Predicted impedance curves for different parametric cases

Conclusions

- A micro-scale model with parallel pathways for ORR is developed for cathode.
- The model predicts local distributions of thermodynamic and electrochemical parameters along with polarization and impedance curves.
- The relative contributions from 2PB and 3PB pathways to the total current could be sensitive to operating conditions as well as cathode microstructure.
- The model exhibits physically plausible sensitivity to the model parameters and showed good qualitative agreement with experimental polarization data

ACKNOWLEDGEMENT

This technical effort was performed in support of the National Energy Technology Laboratory's on-going research in the area of Fundamental Transfer Processes in Solid Oxide Fuel Cells under the RDS contract DE-FE0004000. The microstructure images are provided by Dr. Paul Salvador's research group.

CONTACT

Dr. Ismail Celik, MAE Department West Virginia University, Morgantown, WV. Ph: 304 293 3209 Fax: 304 293 6689 Email: ismail.celik@mail.wvu.edu URL: <u>http://nift.wvu.edu/</u>

NATIONAL ENERGY TECHNOLOGY LABORATORY

